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ABSTRACT: Liquid droplets on micropatterned surfaces con-
sisting of parallel grooves tens of micrometers in width and
depth are considered, and a method for calculating the droplet
volume on these surfaces is presented. This model, which
utilizes the elongated and parallel-sided nature of droplets
condensed on these microgrooved surfaces, requires inputs
from two droplet images at ¢ = 0° and ¢ = 90°—namely, the
droplet major axis, minor axis, height, and two contact angles. In
this method, a circular cross-sectional area is extruded the length
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of the droplet where the chord of the extruded circle is fixed by the width of the droplet. The maximum apparent contact angle is
assumed to occur along the side of the droplet because of the surface energy barrier to wetting imposed by the grooves—a behavior
that was observed experimentally. When applied to water droplets condensed onto a microgrooved aluminum surface, this method
was shown to calculate the actual droplet volume to within 10% for 88% of the droplets analyzed. This method is useful for
estimating the volume of retained droplets on topographically modified, anisotropic surfaces where both heat and mass transfer
occur and the surface microchannels are aligned parallel to gravity to assist in condensate drainage.

B INTRODUCTION

The effective removal of water droplets from heat transfer
surfaces is important to the overall performance of air-condition-
ing and refrigeration systems. In air-cooling applications, water
retention on the heat transfer surface is problematic because it
can reduce the air-side heat transfer coefficient, increase the core
pressure drop, and provide a site for biological activity. In
refrigeration systems, the accumulation of frost on the heat
exchanger requires periodic defrosting and attendant energy
expenditures. When water is retained on these surfaces following
the defrost cycle, ice is more readily formed in the subsequent
cooling period, and such ice can lead to shorter operational times
between defrost cycles. Understanding the shape and size of a
water droplet adhered to a surface is the key to understanding
droplet retention on a surface.

The objective of this work was to devise a method for
predicting the volume of a water droplet that has condensed
onto a microgrooved heat transfer surface using only a few simple
parameters that can be gleaned from two droplet images—a
frontal image and a side image. A method for accurately
calculating the droplet volume is a necessary aspect of water
retention modeling and droplet distribution functions. Thus, the
engineering value of this research rests in its direct application to
the modeling and control of condensate on heat transfer surfaces
used in dehumidification and air-cooling systems. This work also
provided a better understanding of the anisotropic wettability of
a highly controlled surface microstructure which might facilitate
new surface designs with improved liquid drainage behavior. As
part of an effort to provide guidance for the design of these
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surfaces, the applicability of current models, tacitly based on an
assumption of isotropic wetting, and their ability to provide
reliable prediction of water droplet volume on these new surfaces
was also evaluated. Because droplet shapes on surfaces with
anisotropic wetting behavior are different from those on con-
ventional, isotropic surfaces, existing models were observed to be
either inadequate or less accurate.

B LITERATURE REVIEW

In an early theoretical study of the effect of surface hetero-
geneity on the contact angle of stripwise patterned surfaces,
Neumann and Good found that, for line widths below about 0.1
um, the amplitude of the periodic contortion of the three-phase
contact line is less than about 1 nm, which is indistinguishable
from a straight line." Therefore, at these scales, the roughness
should not affect the hysteresis, and anisotropic wetting should
not occur. This proposition was later supported by the theore-
tical work of Schwartz and Garoff which examined the capillary
rise and resulting anisotropic wetting of vertical, doubly perlodlc
patterned surfaces using energy-minimization techniques.” In a
study of droplets on a grooved substrate, Oliver, Huh, and Mason
examined droplets of polyphenylether (PPE) and mercury on parallel-
grooved nitrocellulose surfaces and found that the mercury droplets
were nearly spherical while the PPE droplets were cylindrical.® Using
a mechanistic approach, Oliver and co-workers showed that the
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Cassie—Baxter equation was not valid for the case of cylindrical
droplets on these parallel-grooved surfaces and developed a new
expression for the apparent contact angle from a two-dimen-
sional force balance.

Morita et al. offered insight into the anisotropic wetting of
micropatterned (fluoroalkyl)silane monolayer surfaces with al-
ternating hydrophilic/hydrophobic lines of width 1—20 um.*
They observed that the static and dynamic contact angles of a
droplet oriented orthogonally to the stripes were 10—30° larger
than those of the droplet oriented parallel to the stripes. Sliding
angle data showed low tilt angles for droplets sliding parallel to
the stripes, but droplets sliding orthogonally to the stripes
resisted tilt angles of more than 80°.

Yoshimitsu et al. studied the sliding behavior and contact angle
variation of water droplets on hydrophobic pillar and groove
structures prepared from a silicon wafer by dicing it and then
coating it with (fluoroalkyl)silane.® They found that the depen-
dence of the sliding angle on the weight of the water droplet was
smallest for the parallel direction in the groove structure,
followed by the pillar structure, and finally by the orthogonal
direction in the groove structure. The only paper identified that
addresses the condensation of water vapor onto a superhydro-
phobic grooved surface is the work of Narhe and Beysens.® In this
work, silicon substrates were prepared using the same technique
outlined by Yoshimitsu et al. and treated by silanization. The
contact angles were 130° &= 2° and 110° % 2° in the directions
orthogonal and parallel to the groove, respectively.

In another related work, Chen et al. examined the apparent
contact angle and shape of water droplets on parallel- grooved
surfaces using both numerical and experimental approaches.”
Equilibrium drop shapes were predicted numerically by mini-
mizing the system free energy while simultaneously constraining
the droplet volume to a fixed value. Both the initial droplet shape
and the number of occupied channels were specified as inputs. It
was found that multiple equilibrium shapes were possible, and
the final predicted shape depended largely upon the number of
channels on which the droplet resided. The apparent contact
angle viewed along the channels was typically larger than the
contact angle viewed perpendicular to the channels. This beha-
vior, attributed to the pinning of the droplet against the pillars,
was observed both numerically and experimentally. In their
model, the droplet volume, contour shape, and contact angle
are all needed a priori in arriving at the equilibrium droplet shape.

Dussan V. and Chow studied static droplet shapes at critical
conditions on an inclined surface for a droplet contact line with
straight-line segments on the sides.® In this view, the droplet was
assumed to be elongated and parallel-sided. This analysis, how-
ever, was valid only in the limit of small contact angles, and
Dussan V. later extended this work to allow for larger contact
angles.” The model provided closed-form expressions for the
maximum volume, speed, and wetted area of a droplet on a
surface of inclination, @, but it required knowledge of the
advancing and receding contact angles, 0 and Oy, as well as
the slope of the contact angle with respect to the speed of
the contact line, kg and k. The most limiting restriction of
this analysis was its assumption of small contact angle hysteresis.
Observations of droplets on surfaces with microetched grooves
(such as those in this work) indicate that the hysteresis can
sometimes be large. Dussan V. later included the effects im-
posed by the motion of the surrounding fluid, but again the
analysis was l1m1ted to droplets with small contact angles and
small hysteresis."°

Briscoe and Galvin studied the critical volume of sessile and
pendant droplets and found that the critical surface inclination
angle, Q. scaled with V"3 for sessile droplets, where V is the
volume of the droplet at incipient motion.'" They compared
their data to the prediction of maximum volume given by Dussan
V. and reported reasonable agreement.” In a finite element
solution of the Young—Laplace equation, Brown et al. were able
to solve for the shape of droplets on various surfaces of
inclination."” Their analysis did acknowledge the variation of
the contact angle around the base contour, but it only considered
the case of a circular base contour and predicted the horizontal
contact angle, 0y, to be intermediately located between the
maximum and minimum contact angles of the drop, a behavior
counter to experimental observations. Their approach, which
required the specification of the tilt angle and base contour
radius, also assumed that the droplet volume was known a priori.

Extrand and Kumagai studied contact angle hysteresis, droplet
shape, and the retentive force for water and ethylene glycol
droplets at the critical condition on polymer and silicon surfaces
using a tiltable plane."> They found that surfaces with large
contact angle hysteresis produce more elongated drops. In a
numerical study of droplets at the critical condition, Dimitrako-
poulos and Higdon solved for the droplet configuration that
produced minimum contact angle hysteresis (i.e., 6, — 0) fora
specified advancing angle 6 and Bond number.

Other relevant works include those of Merte and Son and
Merte and Yamali, who studied the equilibrium shape and
departure size of two-dimensional dropwise condensation on a
vertical surface.'>'® A model was developed which minimized
the total energy of the droplet using techniques from variational
calculus. Simulation results were compared against experimental
data, with reasonable agreement found. In this two-dimensional
model, however, the volume was specified a priori. Moy et al.
developed a modified axisymmetric droplet shape analysis ap-
proach, ADSA-MD (maximum diameter), to measure the con-
tact angles of nonwetting droplets from top-view images of the
droplet In this numerical technique, the maximum diameter
and droplet volume are both specified as input parameters in
addition to fluid properties.

In two recent reports by El Sherbini and Jacobi, droplet shapes
were studied experimentally.'®'” The droplet shape was approxi-
mated using a “two-circle method” in which the droplet profile is
fitted with two circles sharing a common tangent at the apex of
the droplet. The volume was then calculated by integrating the
profile around the circumference of the base. This method was
found to accurately predict the volume of droplets, knowing only
the contact angle and shape of the three-phase contact line. Their
work was developed for conventional surfaces of homogeneous
roughness. In the work of El Sherbini and Jacobi, the base
contour was assumed to be elliptical and continuous. Observa-
tions of droplets on surfaces with microetched grooves indicate
that this modeling approach used on conventional surfaces does
not readily extend to topographically anisotropic surfaces.

Other germane studies include those by Amirfazli and co-
workers—Amirfazli et al, Bateni et al., Li and Amirfazli, and
Antonini et al.?** ?® In these later works, various methods are
described for high-accuracy contact angle measurements (ie., a
polynomial fitting scheme, a thermodynamic approach, and a
drop shape analysis algorithm (ADSA-TD) that uses two sessile
drops). In the most recent work, an image-based adhesion force
analysis (IBAFA) methodology is described that reconstructs the
contact line shape using a Fourier cosine series and evaluates the
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Figure 1. Contact angle measurement configuration with channels oriented parallel to gravity.

adhesion force. It is important to note that while this method can
handle irregular droplet shapes (i.e., noncircular and none-
lliptical) such as those arising on surfaces with an anisotropic
topography, multiple droplet profile images are required and the
droplet volume is not explicitly calculated.

In summary, understanding the behavior, shape, and size of
water droplets is the key to understanding droplet retention
on a surface. Significant research has already been reported on
analytical and numerical methods for calculating the droplet
volume on smooth surfaces as well as homogeneously rough
surfaces. However, no calculation method was found that
specifically addresses the volume calculation of condensed
water droplets on parallel, microgrooved surfaces. The in-
ability of existing models to satisfactorily calculate the droplet
volume is largely ascribed to the unusual variation of the
apparent contact angle around the base of the drop, the
discontinuity of the three-phase contact line, and the elon-
gated, parallel-sided droplet shape. Therefore, if functional
topography is to be useful as a method for manipulating
wettability for the purpose of controlling condensation or
water drainage on heat transfer surfaces, then new models and
calculation methods are needed.

B BACKGROUND AND METHODOLOGY

The contact angle 6 that aliquid droplet forms on a horizontal surface
is described by the classical equation by Young (1855)

Ysv — VsL
YLv

cos 0 = (1)
where ygy, Vs, and Ly are the interfacial free energies per unit area of
the solid—vapor, solid—liquid, and liquid—vapor interfaces,
respectively.** The specific contact angle that a water droplet forms
on a surface has long been used as a gauge of the hydrophobicity of the
surface. However, depending on how the water droplet forms on a rough
surface, at least two different wetting regimes can exist. The first form,
known as the “wetted surface”, occurs when the water droplet com-
pletely fills the surface asperities. This particular wetting regime, which
may result from melting frost or condensing water vapor, is usually
described by Wenzel’s theory of wetting (1936) such that

cos @' = r cos 0 (2)

where 6’ is the apparent contact angle of the droplet wetting the surface
and r is the surface roughness factor defined as the ratio of the actual
wetted area to the geometric projected area.”> This ratio always has a
value greater than or equal to unity. The second type known as the
“composite surface” occurs when the droplet is suspended over the
asperities, leaving air trapped beneath it. This form of wetting frequently
occurs when the droplet is injected by syringe onto a surface having
sufficiently small surface features. Composite surfaces are described by

Cassie—Baxter’s theory of wetting (1944), where
cos ' = — 1+ ¢(cos 0+ 1) (3)

and ¢ represents the surface area fraction of the wetted area to the
projected area.”® This fraction always has a value less than unity. By
themselves, however, large contact angles associated with a hydrophobic
surface do not ensure that a surface easily sheds water. Therefore, the
sliding angle is also a useful criterion when evaluating the water drainage
behavior of surfaces. The sliding angle is the critical angle for a water
droplet of known mass to first begin sliding down an inclined surface.

The objective of this research was to develop a new general method for
calculating the volume of liquid droplets on parallel-grooved metallic surfaces,
and as such it was important to understand how such modeling might depend
on the wetting modes described by the Wenzel and Cassie—Baxter models.
To explore the Cassie—Baxter mode of wetting, a micrometer syringe
(Gilmont Instruments Inc.) was used to inject droplets onto the micro-
grooved surface. To explore the Wenzel mode of wetting, a thermoelectric
cooler was used to condense water vapor onto the test surface at fixed surface
temperature and relative humidity inside an environmental enclosure using
the approach described by Sommers and Jacobi”” The humidity was
measured using a capacitive thin-film sensor, and moisture was provided by
a cool-mist ultrasonic humidifier. Intermittently, a cotton swab was used to
remove excess water from the surface to allow for the undisturbed growth of
single isolated droplets. Once a droplet of sufficient size was grown, the
droplet was imaged and then absorbed in a high-density filter paper and
weighed on a high-precision electronic balance accurate to £0.0001 g to
determine its volume.

The apparent contact angles and base dimensions of the droplets were
obtained using a Ramé-Hart goniometer in combination with a high-
resolution charge-coupled device camera. Droplets were photographed
with the etched channels aligned parallel to gravity as shown in Figure 1
with images recorded at azimuthal angles of 0° and 90°. The grooves
were aligned with gravity because that configuration has been shown to
be the most promising for promoting drainage. Typical uncertainty in
the measured contact angle was 1—2°, while typical uncertainty in the
droplet diameter was 2—3%, with the maximum uncertainty not
exceeding 7%. The microgrooved surfaces were produced using stan-
dard photolithographic practices and a reactive ion etching (RIE)
technique described by Sommers and Jacobi.” Alternatively, a wet
chemical etching technique involving Transene aluminum etchant type
A was also used in combination with photolithography to produce a few
microgrooved surfaces. The first method (i.e., RIE etching) results in
vertical sidewalls, whereas the second method (i.e., wet chemical
etching) produces more rounded sidewalls as shown in Figures 2 and 3.

Parallel channels approximately tens of micrometers in width and
depth, running the length of the surface, were etched into plates of
aluminum alloy 1100 (99.9% pure Al), 63.5S mm by 63.5 mm by 3.2 mm
in size. Aluminum was chosen because it is naturally hydrophilic and is
the material of choice in many heat and mass transfer applications. The
plates had an average roughness, R,, of 25—35 nm prior to etching. After
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6.9 um.

Figure 3. SEM images of a wet-etched aluminum sample having a groove width of approximately 15 ym. The images were taken at magnifications of

1800 and 2500, respectively.

undergoing etching, the plates were analyzed using either a Cambridge S-360
scanning electron microscope or a Zeiss Supra 35 VP FEG scanning electron
microscope as well as an Alpha-Step profilometer to determine the surface
geometry accurately. Scanning electron microscope images of a couple
representative surfaces are included in Figures 2 and 3 A list of all
manufactured surfaces can be found in Table 1. (Note: The surfaces shown
in this table were all produced via reactive ion etching.)

B NEW VOLUME CALCULATION METHOD

For the idealized case where the liquid droplet is resting on a
horizontal plane, the droplet takes the shape of a spherical cap where
the base contour is circular and the contact angle is constant around the
base. For this special case, the calculation of the droplet volume is pretty
straightforward and can be found using

(4)

aD? (2 — 3 cos 6 + cos® 9)
V=" " " -
24 sin3 6
where D is the diameter and € is the contact angle. However, the accuracy of
this equation quickly degenerates as the droplet elongates due to surface
inclination (or perhaps the underlying surface morphology). Because
droplets on these anisotropic surfaces tend to be elongated and possess a
parallel-sided base contour shape, using the hemispherical cap approximation
to estimate their volume can be especially problematic. The calculation of
water droplet volume is important in the prediction of condensate retention
on the heat transfer surface. If the volume function is known, then it could be
multiplied by a droplet size-distribution function and integrated over the
droplet diameters and surface area to provide an estimate of the condensate
retention on a given surface.

Table 1. Etched Sample Characteristics

sample no. pillar width, w (um) pillar depth,  (um) aspect ratio, 0/w

1 26.8 52 0.194
2 25.2 15.7 0.623
3 232 27.0 1.174
4 13.42 13.32° 0.801
N 1491 7.85 0.526
6 14.00 6.19 0.442
7 10.40 22.00° 1.964
8 16.05 4.97 0.310
9 19.92 6.89 0.346
10 24.90 6.89 0.277
11 38.00 6.89 0.181
12 4.62 6.89 1.490

“Indirect measurement.

Others have developed methods for calculating the volume of water
droplets; however, most of these methods were developed for, and
tacitly reply upon, droplets on homogeneous surfaces with little
elongation. For instance, the “two-circle model” developed by El
Sherbini and Jacobi,'"” which represents an improvement over the
hemispherical cap method (ie., single-circle method), was based on
experimental observation for droplets where 5 < 1.5 and therefore was
intended primarily for droplets with mild elongation. In the current
work, the elongation of the droplet often exceeds f = 2.5, so the
applicability of this method remains dubious.

5526 dx.doi.org/10.1021/1a104472j |Langmuir 2011, 27, 5523-5533



Langmuir

Direction of
1 integration
- ) N

X1 T'x X2 X3
F—L—» Xn |[€— s
ixe

y allowed to vary

Figure 4. The droplet profile is approximated using both a circle and a
teardrop shape.

The purpose of this work was to provide a more reliable method for
calculating the volume of a droplet as a function of its diameter and contact
angles on a nonhomogeneous surface. In this new approach to calculating the
water droplet volume, the droplet is treated as a cylindrical element, and the
volume is found by integrating the cross-sectional area down the length of the
droplet rather than by the sweeping around the periphery of the droplet and
integrating droplet profiles taken at all azimuthal angles. The advantage of
using this method over the two-circle method is that it utilizes the wetting
behavior of droplets on these microstructured surfaces and therefore does
not require a priori information about the droplet base contour shape or
azimuthal contact angle variation. (Note: This information is provided as
inputs in the two-circle method.) Thus, this new approach takes advantage of
the unique characteristics of water droplets on these surfaces—namely, their
elongated, parallel-sided base contour shape.

The idea behind this aforementioned extrusion method is relatively
simple. As shown in Figure 4, the droplet is split into two regions (red
and blue), each of which is then further subdivided into two smaller
components. Regions 1 and 2 are fit by a teardrop profile

x
y=_va- x (s)
1
where ¢; and ¢, represent constants to be determined later, and regions 3
and 4 are fit by a circle having the form

y=8 = R = (x— (L+m)) ()

where O represents the height of the circle’s center above the surface and xj,
represents the lateral offset of the circle’s center (or the x component of the
distance from the midpoint of the base length to the center). (Note: The
teardrop profile was chosen because for the application motivating this
research (ie, condensation on vertical fin surfaces), droplets have been
observed to exhibit this profile. Other boundary profile equations, however,
may be used and easily adopted in the model. For highly nonwetting
droplets, using two circles to fit the profile may be preferred since the
accuracy of the teardrop profile begins to degenerate for 6, > 90°.)

In this method, the variables h, L, w, 6, and 6, are supplied by the
user and everything else is calculated, including xy,. (If empirically based
correlations are used, the number of user-supplied inputs can be reduced
to four parameters.) The constants appearing in the teardrop profile, ¢,
and ¢,, are found by matching the height of the droplet, &, and the
apparent contact angle, 6. The first boundary condition is found by
taking the derivative of the teardrop function

d 1 X 1
by 1 2

dx ¢ €1 Ve — a?

The slope is then related to the contact angle by

(7)

d c

a’v =tan 0, = \{—1_2 (8)
x=0

which is the first specified boundary condition. The second boundary

condition is found by specifying the height of the droplet and

Figure 5. The constants in the droplet profile equations are found by
matching the contact angles and droplet height.

substituting x = L + «y, into the original function, eq S, to get

L4
=

h o — (L+wx) )

The constants in the circular profile, 0 and R, are found similarly by
matching the droplet height & and contact angle 6 with the specified
inputs. The height is fixed by recognizing that

h=R +0 (10)

and the contact angle is fixed according to

L— T
" where o =0, —— (11)
R, 2

Cos 0 =

as shown in Figure S.
The actual process of extruding a circular cross-sectional area through
regions 2 and 3 is accomplished as follows:

Vi = Vi+Va+V3+ V4 (12)

X X3
V, = / Acdx and V3 = / A dx
X1 X2

where x; = € (for ¢ < 1), x, = L + 1, and x3 = 2L as shown in Figure 4.
The area of the extruded circular segment is equal to the area of the
circular sector minus the area of the triangular portion such that

where

(13, 14)

Ac:[Rgnzw—me) (15)

where R(x) is the radius of the extruded circle which is a function of the
distance along the x coordinate and 0 is the central sector angle. If 0 is
bisected so that & = 2K such as shown in Figure 4, then this can be
rewritten such that for wetting droplets

[R(x)”

A = %)

(2K — sin 2K) (16)

and for nonwetting droplets

[R(x)]*

2

A. = n[R(x)]* — (2K — sin 2K) (17)

The volume of region 1 (i.e,, V;), which is typically less than 0.5% of Vi, is
approximated using the volume formula for a triangular prism, yielding

L I

2

The volume of region 4 (i, V), which is typically less than 1% of V., is
found using the volume formula for a spherical cap, which after substitution
yields the following result:

1
Vv, = gnyc(3rcz +y2) (19)

5527 dx.doi.org/10.1021/1a104472j |Langmuir 2011, 27, 5523-5533



Langmuir

Table 2. Volume Comparison for the Extrusion, Two-Circle, and Spherical Cap Methods

volume (uL), volume (uL), volume (uL),
n Oin (°) 0.4 (°) L (mm) w (mm) h (mm) new method two-circle method spherical cap method (D)
1 S0 80 6.5 S.5 1.752 31.46 29.89 30.36
2 5§ 80 6.5 S.0 1.67 28.22 27.90 27.93
3 45 50 6.5 S.0 1.10 17.78 17.24 17.04
4 45 50 6.5 S.5 121 21.65 19.74 19.66
S 45 N 6.5 S.75 1.265 23.71 21.05 21.01
6 60 65 7.0 5.0 1.517 28.20 28.27 27.70
7 60 65 7.0 5.25 1.593 31.24 30.25 29.80
8 60 65 7.0 S.5 1.669 3443 3229 31.96
9 60 65 7.0 S.75 1.74S 37.75 34.39 34.16
10 60 65 7.0 6.0 1.82 41.19 36.55 36.41
11 60 65 7.0 6.25 1.896 44.79 38.78 38.71
12 35 40 5.0 4.5 0.7638 8.295 7.39 7.39
13 35 40 5.0 4.25 0.7213 7.385 6.80 6.78
14 35 40 5.0 4.0 0.6789 6.520 6.24 6.19
15 35 40 4.0 3.5 0.594 4.007 3.63 3.63
16 35 40 4.0 3.25 0.5516 3.443 3.26 3.24
17 75 80 8.0 6.0 2.408 68.25 64.62 63.66
18 75 80 8.0 S.5 2207 56.81 §7.32 55.87
19 35 80 6.5 6.25 1.714 29.78 2891 30.69
20 35 80 6.5 6.0 1.646 27.63 27.16 28.87
21 40 80 6.5 6.25 1.804 33.25 31.28 32.61
22 45 80 6.5 6.25 1.896 36.83 33.66 34.64
23 30 NV 6.5 6.5 1.183 22.03 20.05 20.49
24 30 5§ 6.5 6.5 1.264 23.01 21.36 22.03
25 30 65 6.5 6.5 1.43 25.04 24.02 25.26
26 30 70 6.5 6.5 1.515 26.18 25.38 26.97
where y, refers to the height of the cap and r, refers to the radius of the circle 0

that forms the base of the cap.
The local cross-sectional radius R(x) is related to the local droplet
height y(x) by the following expressions as shown in Figure 4:

y = R(x) + b(x) (20)
where

w tan
2

R(x) and b(x) = (21, 22)

"~ 2 cos Y
Because these functions vary with the x coordinate and the droplet width
wis fixed by the surface microstructure, the angle 1 is allowed to vary with
the x coordinate, which allows this method to also be used to predict the
maximum contact angle occurring along the side of the droplet at x = L 4 x;,
as will be shown later. Finally, using the Young—Laplace equation, the
location x;, where the droplet height in the y direction is maximum can be
found using

—ay + Vaz? —2a,a,

xp = (23)
a;
where
ar = (o —p,)g/y (24)
1
ay = - (sin 01 —sin 6, — (o — p.)8L*/7) (25)
a3 = (sin 0y +sin 6,)/2L (26)

O Volume Predictions
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Figure 6. Effect of the elongation ratio 3 on the new calculation method
as compared with the two-circle method.

B RESULTS AND DISCUSSION

The new method was initially compared to the two-circle method
developed by El Sherbini and Jacobi'® and the hemispherical cap
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Figure 7. Effect of the contact angle hysteresis on the new calculation
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Figure 9. Comparison of the two-circle and extrusion-based droplet
volume calculation methods.

Figure 8. Images of condensed droplets on a microgrooved surface
exhibiting the elongated, parallel-sided base contour shape.

Table 3. New Method Compared to Experimental Data

experimental volume (#L) calculated volume (L) difference (%)

19.90 19.63 1.36
9.70 9.48 2.27
14.70 13.08 11.0
22.20 21.35 3.83
17.90 16.81 6.09
14.30 13.51 5.52
9.90 10.63 7.37
14.90 14.56 2.28
12.40 13.46 8.55
9.20 8.68 S.65

approximation (eq 4) by calculating the volume of synthetic
droplets of arbitrarily specified parameters (ie, 0y, 0,, L, w, h).
Various droplet lengths and contact angles (n = 26) were examined
to check for any potential problems associated with using the new
method (see Table 2.) For these comparisons, the same geometry

Channels parallel to length
(ie. 6, @ =06, @ p=180°)

Channels into and out of page
(i.e. Bnax @ ¢ =90°)

Figure 10. A 10 uL composite droplet image illustrating the five
required inputs to the model.

and contact angle information was provided to each method. For the
hemispherical cap approximation, the equivalent diameter Dy and
average contact angle were used (i.e,, (6; + 6,)/2). From this initial
comparison, a few interesting observations were made. First,
although the true droplet volume is not known in this comparative
approach, the new method did predict slightly higher droplet
volumes on average than either of the other two methods. For
f > 1.0, the new extrusion-based method yielded slightly higher
droplet volumes than the two-circle method in all cases except two.
The largest difference between these two methods was +15.5%.
Droplet volumes calculated using the new method, however,
differed from the hemispherical cap approximation more uniformly
on both sides—namely, from —4.4% to +15.7%. These differences
can be attributed to the droplet height, which was held the same
in all cases. The new extrusion-based method is proposed for use
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on microgrooved surfaces where droplet elongation is observed and
the droplet height would be diminished slightly relative to the
homogeneous surface due to this elongation of the droplet. Thus,
since the same droplet height was supplied to each method in this
comparison, the new method would be expected to predict slightly
larger droplet volumes.

A second observation involved the effect of the droplet
elongation, 3, on the calculated volumes using these three
approaches. As shown in Figures 6 and 7, the two methods
showed the most agreement when the droplet elongation was

30_'"'\""I""I""!"‘,‘
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20 e

15 [

VOLUME - predicted (uL)
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0 VAN N l PRI RS
0 5 10 15 20 25 30
VOLUME - actual (uL)

L

Figure 11. Accuracy of the new calculation method when applied to
injected ethylene glycol droplets.

pronounced (ie., 3 > 1.2). In contrast, the difference between the
two-circle method and the new extrusion-based calculation
method was most significant for small S. This observation is
consistent with the original development and intended applica-
tion of the new method—namely, parallel-sided, elongated
droplets. As seen in Figure 7, the percent difference between
these two methods was directly commensurate with the elonga-
tion of the droplet. The extent of the difference, however,
depends on the contact angle hysteresis (or 6, — 6,). When
the contact angle difference is large, the new method is better able
to handle small /3 values. This is also consistent with the droplet
profile shapes used in this new method—namely, the teardrop
shape and the circular shape, which when used together better
match the shape of a droplet when the contact angle hysteresis is
large. On the basis of these findings, the new extrusion-based
method is recommended for 3 > 1.2 when 0, — 6, < 25° and for
f < 12 when 6, — 0, = 25°.

Next, these ranges of proposed applicability were examined by
comparing droplet volumes calculated using this new method
against experimental data of actual condensed and injected
droplets. For water droplets condensed on these microstructured
surfaces (see Figure 8), the new method yielded an accuracy that
was similar to, or better than, that of the two-circle method. A
comparison between these two methods is shown in Table 3 and
graphically in Figure 9. It should be pointed out that these
experimental droplet volume data represent water droplets
condensed on sample 2 and therefore the Wenzel mode of
wetting. These volume data were determined by the absorption
and subsequent direct weighing of the droplet on a high-
precision balance, and as a result, these experimental data are
not as accurate as those obtained using a microsyringe. The
maximum uncertainty of the experimental data was 0.5 uL.
Nonetheless, Figure 9 highlights the ability of this new method to

Table 4. Maximum Contact Angle Prediction

nonwetting droplets (water)

wetting droplets (EG)

n 0, (O)

1 1164 1119 3.839 2.652 2.496 145.1 150.2
2 1132 1112 4342 2.581 2.722 152.0 153.3
3 1164 1141 4231 2.998 2.689 145.5 148.9
4 1032 100.8 5492 3.076 2.856 1454 149.9
S 1200 1184 4.277 2.903 2.797 149.7 150.9
6 112.6 109.5 4.582 2.955 2.695 145.8 149.3
7 109.8 106.8 4.385 2.346 2.750 161.7 155.9
8 1164 1120 4.606 3.116 2.758 143.3 148.5
9 1194 117.5 4.161 3.426 2.693 136.2 144.7
10 1104 109.6 5.233 3.385 2.845 138.7 146.9
11 1069 1069 3.880 2219 2434 152.6 154.3
12 1121 107.7 4.487 2.635 2.701 151.6 152.6
13 1171 113.8 4.373 2.898 2.811 148.6 151.1
14 102.6 102.3 3.374 1.773 2.139 155.2 156.6
15 1057 105.6 3.222 1.631 2.119 157.5 158.2
16 103.6 1022 3.638 1.709 2.198 158.6 158.0
17 955 953 2899 1.328 1.723 154.6 158.2
18 944 923 7.003 3.971 2.920 129.3 142.4
19 100.7 100 6.358 4.139 2.945 135.2 141.3

0, (°) L (mm) W (mm) h(mm) measured angle newmethod n 6, (°) 60, (°) L (mm) W (mm) h(mm) measured angle new method

1 448 438 10.894 4.634 1.299 69.0 58.55
2 476 457 8.961  4.929 1.366 64.8 58.0
3 457 456 6.629  2.737 1.116 83.7 78.39
4 483 453 6.616 2933 1.128 81.8 75.13
S 473 483 6.595 3213 1.019 69.2 64.77
6 494 481 6.026  3.063 1.08 76.8 70.38
7 469 460 5.634 2272 0.904 81.3 77.02
8 500 483 4479 2557 0.964 80.4 74.03
9 S16 494 6.537  2.849 1.095 82.4 75.1
10 493 474 6.053 2481 0.969 80.5 75.99
11 462 485 6.665  2.663 1.065 81.7 77.31
12 482 478 6.828  2.778 1.035 76.5 73.38
13 514 S0.1 4981 2254 0.889 81.6 76.53
14 50.8 49.5 5714  2.074 0.978 90.2 86.65
15 506 484 5.674 2350 0.994 84.8 80.46
16 503 492 5716 2.632 0.997 79.8 74.3
17 827 519 6.115  3.121 1.161 79.5 73.3
18 472 467 7.509  2.761 1.139 82.8 79.05
19 495 489 6239  2.187 1.052 89.4 87.78
20 S50.1 497 5795 2268 1.026 87.9 84.28
21 833 505 6.733  2.527 1.157 89.9 84.96
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Figure 12. The new calculation method was shown to predict the
maximum contact angle of both nonwetting droplets and wetting
droplets to a high level of accuracy.

determine the droplet volume using a few measured geometrical
parameters and compares these results to the two-circle method
developed by El Sherbini and Jacobi.'” It should be noted
that, for these data, the two-circle method generated 11 cases
where the percent error was greater than or equal to 10%. By
comparison, this new extrusion-based technique only produced
four cases where the percent error equaled or exceeded 10%.
Because water droplets on these microstructured surfaces tend to
be parallel-sided and are often highly elongated, this method
appears to hold tremendous promise as a nonintrusive means of
determining the droplet volume. It requires only a few simple
inputs which can be gleaned from two images of the droplet at ¢
= 0° and ¢ = 90°—namely, the droplet major axis, minor axis,
height, and apparent contact angles at both the advancing and

receding fronts of the droplet. It should be noted, however, that
this new method of finding the droplet volume tacitly relies upon
the parallel-sided nature of these droplets and as a result is not
intended for droplets on conventional surfaces possessing an
elliptical base contour shape.

The volume of injected droplets was also studied using the
new calculation method. For these tests, a micrometer syringe
(Gilmont Instruments Inc.) was used to inject droplets, 10—50
UL in size, onto the surface. The maximum uncertainty of these
data was £0.25 uL. These data were collected by examining 22
different composite water droplets on sample 5 such as the one
shown in Figure 10. Because these droplets did not fully wet the
microchannels, the parallel-sided base contour shape of the
droplets was not fully realized. As a result, this new method for
calculating the droplet volume tended to underpredict the
droplet volume. For these droplets, the average error associated
with using this method was 15.6% whereas the average error
associated with using the two-circle method was 13.2%. Thus, for
droplets departing from the parallel-sided base contour shape,
the two-circle method developed by El Sherbini and Jacobi'’
provides slightly more accurate results. (Note: In the original
two-circle method, height is not specified as an input parameter.
Thus, to ensure a fair comparison, the two-circle method was
modified slightly to include height as an independent variable. In
this way, both methods started with the same specified inputs.)

The new method was also applied to ethylene glycol droplets
injected onto the surface using a micrometer syringe. Ethylene
glycol, which is a common heat transfer fluid, was examined to
test the generality of the new volume calculation method. For a
sample size of n = 29 droplets, the average error was 11.7% (see
Figure 11). Because the surface tension for ethylene glycol/air is
smaller than that for water/air, the droplet was generally more
elongated and often extended outside the field of view of the
camera. Thus, an additional image was required to measure the
length of the major axis of the droplet, which introduced error
into the calculation method. Nonetheless, these data support the
overall accuracy and generality of the proposed method.

The maximum contact angle of liquid droplets on micro-
grooved surfaces can also be predicted using this new calculation
methodology. Because the contact line is “pinned” on the sides
due to the presence of the channels, the maximum apparent
contact angle typically occurs at ¢ = 90° on these surfaces instead
of at ¢ = 0° (i.e., the advancing front) as is common on isotropic
surfaces. This interesting phenomenon, which can be seen in
Figure 10, has been observed at various angles of surface
inclination as well as for various droplet volumes.”® This phe-
nomenon, which is not present on isotropic surfaces, is manifest
for both wetting and nonwetting droplets (see Table 4). For
these experiments, the nonwetting (or composite) droplets were
formed using water, while the wetting droplets were formed
using ethylene glycol. For the nonwetting droplets, the new
method predicted the measured contact angle occurring at ¢ =
90° on average to within 2.9% for n = 19 droplets, and for the
wetting droplets, the new method predicted the actual maximum
contact angle on average to within 6.6% for n = 21 droplets as shown
in Figure 12. By contrast, the two-circle method assumes that 0,,,,, =
60,. For the data shown in Table 4, however, the measured 0,,,, can
actually be up to 45% higher than 6; due to contact line pinning.
Thus, this new method provides a better prediction of the maximum
angle and therefore a better model of the anisotropic wettability of a
highly controlled surface microstructure. (Note: The two-circle
method was developed for homogeneous surfaces and was never
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intended to be applied to anisotropic surfaces.) Herein lies the value
of the new method. In addition to the improved accuracy of the
calculated droplet volume, the new method may be used to
accurately predict the maximum droplet contact angle that occurs
on these surfaces at ¢ = 90°. Because it provides a better model of
the wetting characteristics of these surfaces, it could be used to
facilitate the design of more robust, anisotropic water-shedding
surfaces. Such surfaces could have profound implications in a range
of engineering applications. Furthermore, methods for accurately
calculating the droplet volume are a necessary aspect to water
retention modeling and droplet distribution functions. Thus, the
engineering value of this research rests in its direct application to the
modeling and control of condensate on heat transfer surfaces used in
dehumidification and air-cooling systems.

Il CONCLUSIONS

A method for calculating the volume of liquid droplets on
anisotropic, microgrooved surfaces is presented. This method,
which utilizes the elongated and parallel-sided nature of liquid
droplets on these surfaces, uses inputs from two different droplet
images at ¢ = 0° and ¢ = 90°—namely, the droplet major axis,
minor axis, height, and two contact angles. In this method, a circular
segment of varying height is extruded the length of the droplet
where the chord length of the segment satisfies the width require-
ment of the droplet. The new extrusion-based method is recom-
mended for droplet aspect ratios 3 > 1.2 and for f < 1.2 when 6, —
0, = 25° and is most accurate when 6, < 90°. When applied to
water droplets condensed onto a microgrooved aluminum surface,
this method was shown to calculate the actual droplet volume to
within 10% for 88% of the droplets analyzed; however, for droplets
departing from the parallel-sided base contour shape, the aforemen-
tioned two-circle method provided more accurate results. The
maximum contact angle for droplets on these surfaces, which occurs
at ¢ = 90° due to the surface energy barrier to wetting imposed by
the grooves, can also be predicted with a high level of accuracy using
this new method. The measured contact angle at ¢ = 90° was
predicted on average to within 2.9% for nonwetting (or composite)
droplets and to within 6.6% for wetting droplets on these surfaces.
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B NOMENCLATURE

ay, a, as constants (eq 23)

A, cross-sectional area (mm?) (eq 15)
Bo Bond number (pgD” sin o) /y

¢, ¢, constants in the teardrop boundary profile (eq S)
droplet equivalent diameter (mm)
acceleration due to gravity (m s )
droplet height (mm)

half of a droplet’s major axis (mm)
droplet mass (mg)

surface roughness factor (eq 2)

€q

TIESR G

R, constant in the circular boundary profile (eq 6 and
Figure 4)

1% droplet volume (uL)

w half of a droplet’s minor axis (mm), etched pillar
width (um)

Xp location where the droplet height is maximum

(mm) (eq 23)
%1, Xy, x3 coordinates defined in Figure 4 (mm)
X, 9,z coordinate directions

Greek Symbols

a surface inclination angle (deg)
B droplet aspect ratio, L/w
0 channel etch depth (um), height of the circle’s

center (mm) (eq 6)

10} azimuthal angle (deg)

y surface tension (N m ")

® surface area fraction used in the Cassie model (ratio
of wetted surface area to projected area) (eq 3)

K angle associated with the circular sector (deg)
(Figure 4)

0 apparent contact angle (deg)

o angle equal to 0, — 7/2 (deg) (eq 11)

c droplet base contour radius (mm)

Subscripts

adv advancing

eq equivalent

min minimum

max maximum

rec receding
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